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Work distribution for the adiabatic compression of a dilute and interacting classical gas
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We consider a simple, physically motivated model of a dilute classical gas of interacting particles, initially
equilibrated with a heat bath, undergoing adiabatic and quasistatic compression or expansion. This provides an
example of a thermodynamic process for which non-Gaussian work fluctuations can be computed exactly from
microscopic principles. We find that the work performed during this process is described statistically by a
gamma distribution, and we use this result to show that the model satisfies the nonequilibrium work and
fluctuation theorems, but not a prediction based on linear response theory.
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When a system is driven away from an initial state of
thermal equilibrium by a mechanical perturbation, the statis-
tical distribution of work for that process exhibits universal
properties. In particular, the exponential average of the non-
equilibrium work is related to an equilibrium free energy
difference [1,2],

BAF =—1n{¢e ") =—1n j dWp(W)e PV, (1)

Furthermore, the work distribution for such a process and the
corresponding reversed process are related by the following
work fluctuation theorem [3,4]:
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Here, W is the work performed during a given realization of
the process [5]; B is the inverse temperature of a thermal
environment with which the system is initially equilibrated;
AF is the free energy difference between two equilibrium
states, both at temperature 87!, corresponding to the initial
and final values of the external work parameter [Eq. (13)]; p
is the work probability distribution; and the subscripts F and
R distinguish conjugate forward and reverse processes,
where necessary. (See Refs. [1-6] for more details.) For cy-
clic processes, AF=0 and Eq. (1) reduces to a result derived
by Bochkov and Kuzovlev [7-9].

The discovery of these relations makes it interesting to
find model systems for which the work distributions can be
computed analytically. Previous models include harmonic
potentials [10], two-level systems [11,12], ideal gas com-
pression [13-16] and effusion [17], Gaussian polymer chains
[14,18-20], Joule experiments [21], adiabatically stretched
rotors [22,23], and charged particles in magnetic fields [24].

Here we consider a textbook example of a thermodynamic
process: the slow, adiabatic compression or expansion of a

*Electronic address: gecrooks@Ibl.gov
"Electronic address: cjarzyns@umd.edu

1539-3755/2007/75(2)/021116(4)

021116-1

PACS number(s): 05.70.Ln, 05.40.—a

dilute, interacting classical gas. This model was suggested to
one of us (C.J.) by Seth Putterman [25] and has also ap-
peared in this setting in a preprint by Sung [26]. Using el-
ementary statistical mechanics, we solve for the work distri-
bution and use this to verify Egs. (1) and (2). This simple,
physically motivated example has a number of attractive fea-
tures. Unlike an ideal (noninteracting) gas, our model repre-
sents a genuine many-body system whose work distribution
is both easy to calculate and describe and which is distinctly
non-Gaussian [Eq. (12)]. The cumulants of this distribution
are known exactly [Eq. (15)]; we exploit this to illustrate
problems with applying the central limit theorem to appar-
ently Gaussian distributions. The canonical temperature of
the gas remains well-defined throughout the process [Eq.
(18)]; we use this to clarify the physical meaning of the
quantity AF. Finally, our model has considerable pedagogi-
cal value as the microscopic counterpart of a familiar mac-
roscopic example of an adiabatic thermodynamic process.

Let us define the model more precisely. Consider the sys-
tem shown in Fig. 1, a dilute classical gas confined in a
piston. We assume that quantum effects are negligible, that
the particles have no important internal structure, and that
they rarely collide with one another. Specifically, the mean
free path between such collisions is finite, but much greater
than the characteristic distance between nearby particles. Ini-
tially, the piston is held fixed and the gas is brought to ther-
mal equilibrium with an external, infinite heat bath. The bath
is then removed, and the piston is very slowly forced inward,
performing work as it compresses the gas to a new volume.
In the corresponding reverse process the gas begins in equi-
librium with the heat bath at the final volume of the forward
process and we then adiabatically expand the gas back to the
initial volume.

FIG. 1. A gas confined to a cylinder with a controllable
piston.
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During the process of adiabatic compression just de-
scribed, the gas remains in equilibrium locally, but not glo-
bally: since no heat is exchanged across the walls of the
container, the kinetic temperature of the gas rises as the pis-
ton moves inward, resulting in a temperature difference be-
tween the gas and the heat bath. By contrast, if the gas were
to remain in thermal contact with the heat bath as it was
slowly compressed, then the process would be isothermal
(rather than adiabatic) and global equilibrium would be pre-
served.

As a first pass at this model, let us use simple arguments
to verify Eq. (1). In three spatial dimensions, the average

equilibrium energy of a dilute N-particle gas is E=3N/28
and the entropy is given by the Sackur-Tetrode equation
S/N=In(V/INA3)+5/2. Here V is the volume of the box and
A=\Bh*/2mm is the thermal de Broglie wavelength (4 is
Planck’s constant and m is the particle mass). The free en-

ergy F=E— 'S is then

N VN 3 (2mm
F(ﬁ,V):——{ln(—)+—ln< 2)+l], (3)
B N/ 2 Bh
which satisfies the scaling law (for any o>0)

oF(oB,V)=F(B,a7*?V). (4)

When such a gas is prepared in equilibrium, as described
above, its energy E can be viewed as a random variable
sampled from the canonical distribution,

P(E;B,V) = g(E;V)e PE, (5)

1
Z(B.V)
where g(E) is the density of states and Z=e # is the parti-
tion function. Since the pressure of a dilute gas is p
=2FE/3V and its energy during an adiabatic process changes
by increments dE=—pdV, the product VE*? is conserved as
we slowly change the volume from V,, to V; [26]. The final
energy is thus

E; = (Vy/V))*Eqy = qE,, (6)
where d=3, and the work performed is
WZE]—Eozan, a=q—l. (7)

Note that a is positive for compression and negative for
expansion, and —1 <a <. For expansion |W| cannot be
greater than the initial kinetic energy.

Using Egs. (5) and (7) we get

—In(e”"y=—1n f dEyP(Ey; B, Vo)e PV ED

1
- ln[ Z(B,Vy) dEg(Eo; Vo)e_‘lﬁEo}
—1In Z(B,Vy) qBF(qB,V,) — BF(B,V,).

But gF(¢B,Vy)=F(B,V,) [Eq. (4)]; hence, the right side is
simply BF(B,V,)—BF(B,V,)=BAF, as predicted by Eq. (1).
The preceding simple analysis is based on a large-N ap-
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proximation [Eq. (3)], not an exact result. Moreover, we have
invoked macroscopic, thermodynamic arguments in deriving
Eq. (7). Such arguments are valid when the aim is to describe
the typical behavior of a system, but become suspect in the
present context, since the average (exp(—BW)) is often domi-
nated by highly atypical realizations. Finally, to verify Eq.
(2) we must solve for p(W), which requires obtaining the
density of states, g(E). We therefore now proceed with a
more careful analysis. For the sake of generality, we allow
the dimensionality of space to be an arbitrary integer d>1,
rather than assuming d=3.

The density of states is the derivative of ®(E), the number
of energy states with energy less than E. For a dilute gas in
the classical limit,

1 KV (2mmE)*

PEV= 5

(8)

where k=dN/2 and I'(k) is the gamma function. On the right
side of Eq. (8), the first factor accounts for the quantum
graininess of phase space, the factor V¥/N! counts the num-
ber of arrangements of N identical particles in a volume V,
and the last factor is the volume of a dN-dimensional hyper-
sphere of radius y2mE in momentum space [27]. Hence

a1 W (277m)kEk_1.

EV)="—=——
$EV)I= 2 E = N T

9)

The partition function Z=[dEg(E)e™®F and free energy F
follow by direct integration:

N k
F(,B,V):—éan(ﬁ,V):—%ln{%(%) } (10)

[We recover Eq. (3) using Stirling’s approximation In N!
=~ N In N-N.] Equations (5), (9), and (10) together give us

B

TG (1)

P(E;B) =

The notation P(E;8) [compare with Eq. (5)] reflects the re-
sult that the canonical energy distribution is independent of
container volume V.

Let us now rederive Eq. (7) (for arbitrary d>1) using
microscopic principles rather than thermodynamic argu-
ments. We will assume the dynamics are ergodic when the
container is held fixed. (For a hard-sphere gas, this assump-
tion is reasonable for as few as N=2 spheres [28].) An er-
godic Hamiltonian trajectory explores all regions of a
constant-energy surface in 2dN-dimensional phase space. It
then follows that ®(E;V) is an adiabatic invariant [29,30]:
when V is varied infinitely slowly, the energy of the gas
evolves so as to keep the value of ® constant. The final
energy E; is thus determined uniquely by the initial energy
E,[2,15,31,32]. Specifically, since ® « (VE/*)N [Eq. (8)], we
again obtain E,=(V,/V,)?“E,; hence, W=aE, [Eq. (7)].

Because E determines W, the distribution of initial ener-
gies maps onto a distribution of work values:
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FIG. 2. The work probability density p(W) given by Eq. (12). The solid lines are the work of compression, and the dashed lines are the
negative work of expansion. Note that the magnitude of the work is greater for compression than expansion. Each distribution obeys the
nonequilibrium work theorem (1), and each compression-expansion pair are related by the work fluctuation theorem (2). A direct conse-
quence of the latter, illustrated in the figure, is that the corresponding forward and negative reverse work distributions cross at W=AF (13).

p(W) = f dEP(Ey; B) (W — aE,)

Wi\ 1
=|a|€(k)(%) e PWMag(aw). (12)

Here the unit step function 6(-) guarantees that W is positive
for compression (a>0) and negative for expansion (a<0).
Note that p(W) depends on the ratio V,/V, and not on the
absolute volumes. Equation (12), the central result of this
paper, shows that the distribution of absolute work values is
a gamma distribution with shape parameter k=dN/2 and
scale s=|a|/B, as illustrated in Fig. 2. In contrast with pre-
vious models [10-24], this non-Gaussian expression is valid
for an interacting, many-particle system.

Equation (12) allows us to verify the fluctuation theorem,
Eq. (2). Let ap=(Vy/V,)??=1 and ag=(V,/V,)*¢~1 denote
the values of « for the forward (Vy— V) and reverse (V;
—V,) processes. Note that —ag/ap=(V,/Vy)*? and af'
+ag'=—1. Combining these identities with Eq. (12), we ob-
tain

k-1
e W) @<— %) expl- BW(az' +az)]

pr(=W)  |agl\  ap
N
_ (ﬁ) BV Z GBW-AF)
Vo ’
where
N V, 1dN
AF=F(B,V))-F(B,Vy)=—In—=——"1In(l +a),

B Vi B2

(13)

by Eqgs. (7) and (10). This confirms Eq. (2).

The nonequilibrium work relation [Eq. (1)] follows imme-
diately from the work fluctuation theorem [Eq. (2)] [3],
though it can also be verified by the direct evaluation of
Sp(W)e B¥dW. An alternative approach is to use a cumulant

expansion [1]

In(e Py =, (- ﬁ)f’j—f’f, (14)
j=1 :

where w; is the jth cumulant of p(W). Using standard prop-
erties of the gamma distribution [33], we get

wf%\/(%)j(j—l)u (15)
hence
—1n<e-ﬁW>=—diVEﬂ=dﬂln(1+a), (16)
250 2

again confirming Eq. (1) for this model [see Eq. (13)].

The adiabatic invariance of ®(E;V) determines the en-
ergy of the gas, not only at the end of the process [Eq. (6)]
but also at intermediate times: E(f)=[V,/V()?“Ey= q,E,.
Combining this result with Eq. (11) to evaluate the time-
dependent distribution of gas energies,

P(E,t)=fdEoP(Eo;B)5(E—quo)=P(E;B/qr), (17)

we find that our ensemble remains canonically distributed
during the entire process (this is a specific feature of our
model) at a slowly changing temperature

T(1) = [Vy/ V() 7T,.

This is in agreement with a macroscopic picture of adiabatic
compression. It is important to keep in mind, however, that
AF in Egs. (1) and (2) is nor the free energy difference be-
tween the initial and final states of the gas during this adia-
batic process, but rather between the terminal states of the
corresponding isothermal process; see Eq. (13), the earlier
discussion of local and global equilibrium, and Refs. [34,35].

When N> 1, we expect a Gaussian distribution of work
values, by the central limit theorem. Equation (12) confirms
this expectation, as the gamma distribution approaches a
Gaussian for large k=dN/2 [33]. Since all higher (j>2) cu-

(18)
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mulants of a Gaussian vanish identically, we might be
tempted to conclude that a good approximation is obtained
by truncating Eq. (14) after two terms:

AP =W-Ta =2 Ta-ad  (19)
where (W)=w, and o4,=w, are the mean and variance of
p(W). However, comparison with the exact result, Eq. (13),
reveals that this approximation is valid only for small |«
when V, = V,. The failure of Eq. (19) for larger |/ illustrates
a subtle point: while p(W) is indeed very nearly Gaussian in
the central region near its mean, the average of exp(—BW) is
dominated by work values deep in the lower tail of the dis-
tribution [12,36], precisely where the central limit theorem
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does not apply. Thus we cannot use the argument that p(W)
“becomes Gaussian” to justify neglecting the higher cumu-
lants. Equation (19) is also the linear response prediction for
AF, which is valid for processes that can be viewed as small
excursions away from an isothermal process [37]. However,
this condition is not met during the adiabatic process that we
have considered: unless V| =V,, the temperature of the en-
semble under adiabatic compression changes substantially
[Eq. (18)].
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